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Abstract

IMPORTANCE Given the increasing prevalence of dementia and the limited treatment options
available, ultrasound neuromodulation could serve as a novel add-on therapy to standard treatments
for Alzheimer disease (AD). As ultrasound neuromodulation is still in its early stages, further research
is essential to fully explore its potential in treating brain disorders.

OBJECTIVE To evaluate clinical and functional imaging effects of transcranial pulse stimulation
(TPS) in patients with AD.

DESIGN, SETTING, AND PARTICIPANTS A randomized, double-blind, sham-controlled, crossover
clinical trial was conducted at the Medical University of Vienna between January 1, 2017, and July 27,
2022. Sixty patients with clinically diagnosed AD receiving state-of-the-art treatment were randomly
allocated to treatment sequence groups verum-sham (first cycle verum, second cycle sham, n = 30)
and sham-verum (n = 30). Data analysis was performed from July 28, 2022, to September 5, 2024.

INTERVENTION Each participant received 6 verum and 6 sham TPS sessions (6000 pulses, 0.20
mJ/mm2, 5 Hz) to frontoparietal brain areas.

MAIN OUTCOMES AND MEASURES Neuropsychological tests, including the primary outcome
Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) corrected total score (CTS), were
performed at baseline and 1 week, 1 month, and 3 months following the stimulations in each cycle.
Primary and secondary outcomes, including functional magnetic resonance imaging and Beck
Depression Inventory-II, were analyzed by intention-to-treat analysis and, for sensitivity, by per
protocol analysis.

RESULTS For the intention-to-treat analysis, 60 patients between ages 51 and 82 years (mean [SD],
70.65 [8.16] years; 30 females; 30 males) were included. The CERAD CTS increased by a mean (SD)
of 2.22 (6.87) points in the verum condition from 70.93 (14.27) points at baseline to 73.15 (14.90) 3
months after stimulation, while the mean (SD) score in the sham condition increased by 1.00 (6.82)
point vs baseline from 71.68 (13.62] at baseline to 72.68 (14.48) 3 months after stimulation. Primary
data analysis of the condition × session interaction was not significant (P = .68; partial η2

[ηp2] = 0.01), but its interaction with age was P = .003; ηp2 = 0.08, followed by post hoc analyses of
age subsamples. Although several patients older than 70 years benefited from verum TPS, only the
younger subgroup (�70 years) showed significantly higher CTS increases for verum in all
poststimulation sessions (condition × session: P = .005; ηp2 = 0.16). At 3 months after stimulation,
for example, a mean (SD) 3.91 (7.86)-point increase was found for verum TPS in the younger patients,
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Abstract (continued)

but a mean (SD) CTS decrease of 1.83 (5.80) was observed for sham. Memory-associated brain
activation was significantly higher after verum TPS in the precuneus, visual, and frontal areas, while
resting state functional connectivity was significantly upregulated in the dorsal attention network. In
the per protocol sample, a significant reduction of the Beck Depression Inventory-II scores 3 months
following verum TPS was found (verum baseline: 7.27 [5.87]; verum 3 months after stimulation: 5.27
[5.27]; sham baseline: 6.70 [5.65]; sham 3 months after stimulation: 6.22 [4.40]; P = .008;
ηp2 = 0.23). During both verum and sham conditions, the most common observed adverse symptom
was depression; no major neuropathologic change was detected in the patients by detailed
neuroradiologic assessments.

CONCLUSIONS AND RELEVANCE In this randomized clinical trial of TPS in patients with AD, a
2-week verum treatment improved cognitive scores in the younger subgroup, ameliorated
depressive symptoms, and induced upregulation of functional brain activation and connectivity.
These findings suggest TPS may be a safe and promising add-on therapy for patients with AD
receiving state-of-the-art treatment.

TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03770182
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Introduction

Alzheimer disease (AD), the most common form of dementia, is neuropathologically characterized by
the progressive accumulation of amyloid β plaques and tau tangles. Clinically, AD follows a
continuum that begins with a presymptomatic phase, advances to mild cognitive impairment, and
eventually progresses to dementia.1 Most pharmacologic treatments, including novel monoclonal
antibodies, are approved for early stages only, and their clinical effects and risk-benefit ratio remain
under debate.2-4 Noninvasive brain stimulation has demonstrated the potential to further enhance
clinical outcomes for patients already receiving state-of-the-art therapy.5,6 In particular, the
pioneering development of focused navigated ultrasound neuromodulation has attracted increasing
attention.7-10 In contrast to electric (eg, transcranial direct current stimulation) or magnetic
techniques (eg, transcranial magnetic stimulation), ultrasound neuromodulation exhibits specific
advantages for therapeutic applications: (1) brain abnormalities may not considerably mislead the
stimulation focus as possible with electromagnetic field distortions,11 (2) noninvasive modulation of
deep brain areas is possible,12 and (3) the stimulation is highly focal.13

In an uncontrolled setting, the first study14 with navigated focused ultrasound neuromodulation
in AD indicated potential cognitive, functional magnetic resonance imaging (fMRI), and morphologic
effects in patients already receiving standard treatments.14-17 Combining clinical data with
multimodal MRI, we provide what is, to our knowledge, the first sham-controlled randomized clinical
trial on focused ultrasound neuromodulation in AD to evaluate the clinical potential of this novel add-
on therapy.

Methods

Study Design
This randomized, double-blind, sham-controlled clinical trial was conducted at the Medical University
of Vienna and obtained the ethical approval from the ethics committee of the Medical University of
Vienna. This study adhered to the Consolidated Standards of Reporting Trials (CONSORT) reporting
guideline for randomized clinical trials. All participants were receiving stable state-of-the art
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treatment and signed written informed consent forms; participants received financial
compensation.

General TPS methods and evaluation settings closely followed the pilot study.14 Participants
received verum and sham TPS stimulation in a crossover design and were randomly allocated to the
intervention sequence groups verum-sham (first cycle verum, second cycle sham) and sham-verum
(eMethods in Supplement 2). Both cycles included baseline assessments, 6 TPS interventions within
2 weeks, and follow-ups 1 week, 1 month, and 3 months after completing the stimulations (eFigure 1
in Supplement 2). The washout period between both cycles lasted 5 weeks, leading to an interval of
approximately 4 months between verum and sham interventions.

Participants
The study population comprised 60 patients whose condition was clinically stable with mild
cognitive impairment or probable AD according to clinical National Institute on Aging and Alzheimer’s
Association (NIA-AA) criteria18 or International Statistical Classification of Diseases and Related
Health Problems, 10th Revision (ICD-10) criteria (code F00.). Participants were recruited via media
reports and advertisements and from the Department of Neurology, Medical University of Vienna.
Exclusion criteria were nonadherence to the protocol, relevant intracerebral pathologic factors
unrelated to AD, hemophilia or other blood clotting disorders, thrombosis, corticosteroid treatment
within the last 6 weeks, and women who were pregnant or breastfeeding.

Procedures
Participants received 6 TPS applications over 2 weeks per cycle (6 verum plus 6 sham TPS
applications in total), using a modified Duolith SD1 (Storz Medical AG). This system was the prototype
of the Neurolith,14 which received the Conformité Européene mark of the European Union for AD
treatment in 2018. Per session, 6000 TPS pulses were applied, with 0.20-mJ/mm2 energy flux
density, 3-μs pulse duration, 5-Hz pulse repetition frequency, duty cycle = 0.000015, and a
multifrequency band predominantly between 0.05 and 0.45 MHz. Considering a skull attenuation of
80% to 90%,14 typical maximum pulse characteristics below the skull were 24 mW/cm2 spatial peak
temporal average intensity, 1.6 kW/cm2 spatial peak pulse average intensity, and ambient pressure–
related positive (7.5 MPa) and negative (−6 MPa) peak pressures. Brain stimulation targets comprised
bilateral dorsolateral prefrontal cortex and inferior frontal cortex, bilateral lateral parietal cortex
extending to the Wernicke area, and precuneus cortex (eFigure 2 in Supplement 2). For sham
stimulation, a cap on the TPS hand piece blocking the ultrasound waves was applied, looking and
sounding identical to the verum cap (eMethods in Supplement 2).

Neuropsychological assessments were administered in the first week of each cycle (baseline),
after the treatments in week 5 (post stimulation), week 8 (1 month post stimulation), and week 16 (3
months post stimulation), maintaining the same structure across both study cycles (eMethods in
Supplement 1). For both cycles, MRI measurements were recorded the week before and the week
after TPS stimulations, resulting in 4 MRI sessions in total. The MRI measurements were performed
using a 3-T instrument with a 64-channel head coil (Prisma MR; Siemens). A T1-weighted structural
image, T2-weighted fast low-angle shot and fluid-attenuated inversion recovery sequences to
evaluate potential neuropathologic characteristics, and T2*-weighted EPI data for the memory task
(eFigure 3 in Supplement 2) and resting state fMRI were recorded (eMethods in Supplement 2).

Outcomes
As a reliable measure for cognitive deficits due to dementia, the Consortium to Establish a Registry
for Alzheimer’s Disease (CERAD) corrected total score (CTS) constituted the primary outcome for
this study.19,20 Secondary outcomes included the cognitive test batteries (Neuropsychological Test
Battery Vienna and Alzheimer Disease Assessment Scale [ADAS], ADAS-Sum, ADAS-Cog, and clock
drawing test), depression inventories (Beck Depression Inventory-II [BDI-II], Geriatric Depression
Scale), self and external assessments of forgetfulness (Forgetfulness Assessment Inventory),
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activities of daily living (Instrumental Activities of Daily Living Scale, Bayer Activities of Daily Living
Scale), leisure behavior, the Prosopagnosia Index, and the Neuropsychiatric Inventory. Functional
imaging outcomes comprised memory task fMRI activation and functional connectivity as assessed
by the global efficiency (GE) within brain networks during resting-state fMRI.

Adverse events were systematically collected through interviews with patients and accompanying
persons. The eMethods in Supplement 2 includes further details regarding study outcomes.

Statistical Analysis
The sample size calculation was based on CERAD CTS improvement in pilot data, resulting in a
minimal sample size of 24 patients per group. To account for dropouts, 30 patients were included per
treatment sequence group.

For initial focused outcome analysis, behavioral variables were independently analyzed by a
contract research organization, testing the difference between treatment sequence groups
regarding score changes using t tests (eMethods in Supplement 2). This was complemented by a
repeated-measures analysis of variance (rmANOVA) as predefined in the clinical investigation plan
and necessary to evaluate main effects and interactions.14 Analysis of neuropsychological outcomes
was conducted for the intention-to-treat (ITT) sample, including dropouts with missing values
imputed using last-observation-carried-forward, and for the per-protocol (PP) sample as secondary
supporting analysis. Partial η2 (ηp2) was used to measure effect size, with thresholds of 0.01
indicating a small effect, 0.06 a medium effect, and 0.14 suggesting a large effect.

Behavioral data analysis was performed using SPSS Statistics, version 28.0 (IBM Corp). An
rmANOVA with the within-patient factors condition (verum and sham) and session (baseline, post
stimulation, 1-month post stimulation, 3-month post stimulation) and the interaction condition × session
was conducted for the primary outcome variable CERAD CTS and behavioral secondary outcomes. The
level of significance was set at P < .05 (2-sided). Significant interactions between condition and session
were followed by post hoc comparisons of treatment effect (verum and sham) for each post stimulation
time point vs baseline, adjusted for multiple comparisons using Bonferroni-Holm correction.

Differences between both groups regarding potential biasing baseline characteristics were
addressed by entering the confounding variable as a covariate in a post hoc rmANCOVA. Pearson
correlation analysis between age and the CERAD CTS outcome was conducted. To rule out possible
influences of carryover effects, a post hoc parallel-group analysis of the first cycle was performed by
calculating an rmANCOVA with group as a between-patient factor, session as a within-patient factor,
and relevant baseline characteristics as covariates.

The fMRI memory task data were analyzed using SPM12, version 7771 (Wellcome Trust Centre
for Neuroimaging). After preprocessing and patient-level statistics of novel vs repeated face-name
associations, a flexible factorial design with the within-patient factors condition (verum and sham)
and session (baseline and post stimulation), as well as the factor patient, was applied on group level.

Analysis of resting-state fMRI data was performed using the CONN toolbox, version 22a
(Computational Neuroscience Research Lab).21 Following preprocessing and denoising, functional
connectivity matrices were calculated for every patient and group statistics were entered using the
graph theoretical measure GE within several cognitive networks.

Data analysis was performed from July 28, 2022, to September 5, 2024. Further details
regarding the fMRI task and functional connectivity analysis are available in the eMethods in
Supplement 2.

Results

Study Population
Between January 1, 2017, and July 27, 2022, 143 individuals were recruited, and after comprehensive
screening for eligibility, 60 were randomized to the groups verum-sham and sham-verum (30 each)
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(Figure 1). According to NIA-AA criteria,18 31 patients (52%) were diagnosed with probable AD and 14
(23%) with mild cognitive impairment due to AD. In addition, 15 patients were diagnosed based on
ICD-10 as meeting the criteria for either dementia in AD (13 [22%]) or mild cognitive impairment (2
[3%]). The NIA-AA criteria exclude substantial concomitant cerebrovascular disease, which was also
assessed in patients whose condition was diagnosed according to ICD-10 using the Fazekas score.
Only 1 patient (verum-sham group) showed a Fazekas score of 3 during the eligibility screening,
indicating vascular comorbidity in this individual. There were no statistically significant differences
regarding baseline cognitive abilities as assessed by the Mini-Mental State Examination (MMSE)
between patients with a diagnosis according to NIA-AA (n = 45; mean [SD], 23.91 [3.22]) and ICD-10
(n = 15; mean [SD], 23.22 [2.99]) (P = .54; unpaired t test, 2-sided).

For 5 patients, study participation terminated ahead of time. A small, preexisting subarachnoid
hemorrhage was detected in 1 participant during the baseline MRI, resulting in exclusion from the study.
Another patient developed a mild transient ischemic attack after completing the first cycle (sham). Three
participants withdrew from the study due to the burden of the study appointments: one after 3 verum
stimulation sessions, another after 6 verum stimulations, and the third after completing the first study
cycle (sham). All other patients (n = 55) received 6 verum and 6 sham treatments and completed the
CERAD for all required study visits. In 10 patients, at least 1 assessment occurred outside the designated
visit window (±7 days around the scheduled appointment). The remaining 45 patients constitute the
PP sample (23 verum-sham, 22 sham-verum).

Patients in the ITT sample (60; 30 females, 30 males) were a mean (SD) age of 70.65 (8.16) (range,
51-82) years and had 13.28 (3.44) years of formal education. Age was considerably older in the sham-
verum group (mean [SD], 73.47 [6.59] years) compared with the verum-sham group (67.83 [8.69]
years). The mean MMSE score was 23.77 (3.53), with most patients (n = 46) having mild dementia
(MMSE, 18-26,), 5 patients showing moderate dementia (MMSE, 10-17), and 11 patients displaying mild
or minor cognitive impairment (MMSE, 27-30). The BDI-II score at baseline was a mean of 7.17 (5.59),
with most patients (n = 37) showing no depressive symptoms (BDI-II, 0-8), 15 patients with minimal
depression (BDI-II, 9-13), 5 patients with mild depression (BDI-II, 14-19), 1 patient with severe depression

Figure 1. Trial Profile

143 Assessed for eligibility

83 Excluded
39 Did not meet inclusion criteria
24 Declined to participate
20 Other reasons

60 Randomized

2 Declined after cycle 1

30 Randomized to treatment sequence
group sham-verum

30 Randomized to treatment sequence
group verum-sham

27 Complete CERAD CTS data
30 ITT (missing values imputed

with LOCF)
22 PP

28 Complete CERAD CTS data
30 ITT (missing values imputed

with LOCF)
23 PP

29 Completed cycle 1
1 Did not meet inclusion criteria

(excluded after 1 treatment)

28 Completed cycle 1
1 Declined to participate after 3

treatments
1 Declined to participate after 6

treatments

27 Completed cycle 228 Completed cycle 2 Of 143 individuals screened for eligibility, 60 were
randomly allocated to the treatment sequence groups
verum followed by sham and sham followed by verum.
In total, 60 patients were included in the intention-
to-treat (ITTT) sample and 45 in the per-protocol (PP)
sample. CTS indicates corrected total score.
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(BDI-II, >29), and baseline BDI-II values missing for 2 patients. For more details, supplementary baseline
characteristics, including patient medication are available in eTables 1-3 in Supplement 2.

Primary Outcome
The mean (SD) primary outcome CERAD CTS increased in the verum condition by 2.22 (6.87) points
from 70.93 (14.27) at baseline to 73.15 (14.90) 3 months post stimulation, while the mean score in the
sham condition increased by 1.00 (6.82) point from 71.68 (13.62) at baseline to 72.68 (14.48) 3 months
post stimulation (Table; eFigure 4, and eTable 4 in Supplement 2). The rmANOVA revealed an effect of
time (main effect of session: P = .007; ηp2 = 0.07) (eTable 5 in Supplement 2), but the interaction
condition × session was not significant (P = .68; ηp2 = 0.01), in accordance with the findings of the
contract research organization (eTable 39 in Supplement 2). As age differed significantly between the
treatment sequence groups (mean [SD] verum-sham: 67.83 [8.69]; sham-verum: 73.47 [6.59] years;
P = .007; unpaired t test), age at baseline was included as a covariate in the statistical model.

The post hoc rmANCOVA revealed an effect of session (P = .008; ηp2 = 0.07) (eTable 6 in
Supplement 2) and an interaction of condition × session × age (P = .003; ηp2 = 0.08) that was
followed by subgroup analyses (rmANOVA with condition and session as within-patient factors) for
patients younger and older than the mean age of 70.65 years to disentangle the 3-way interaction.
For the younger participants (mean age, 62.69; range, 51-70 years), a significant interaction between
condition × session (P = .005; ηp2 = 0.16) was found with significantly higher score gains for all
follow-up sessions in the verum compared with the sham condition (ηp2 >0.20 for all post hoc
contrasts) (eTable 7, eTable 8, and eFigure 4 in Supplement 2). The CERAD CTS increased 3.91 (7.86)
points 3 months post stimulation compared with baseline in the verum condition but decreased 1.83
(5.80) points during the sham cycle in the younger patients. For the older participants (mean age,
76.73; range, 71-82 years), only the main effect of the session was significant (P = .01; ηp2 = 0.11)
(eFigure 4D, eTable 9 in Supplement 2).

Pearson correlation analysis between age and the CERAD CTS outcome ([verum 3 months post
stimulation vs verum baseline] vs [sham 3 months post stimulation vs sham baseline]) revealed a
significant negative correlation (r = −0.409; P = .001), meaning that younger age was associated

Table. Neuropsychological Outcomes at Each Time Point in Intention-to-Treat Analysis

Test
No. of
patients

Verum, mean (SD) Sham, mean (SD)

Baseline Post stimulation
1 mo Post
stimulation

3-mo Post
stimulation Baseline Post stimulation

1-mo Post
stimulation

3-mo Post
stimulation

CERAD CTS 60 70.93 (14.27) 72.69 (13.03) 72.92 (14.50) 73.15 (14.90) 71.68 (13.62) 72.26 (14.09) 73.00 (15.26) 72.68 (14.48)

NTBV 60 −1.65 (0.91) −1.59 (0.89) −1.56 (0.94) −1.56 (0.93) −1.66 (0.90) −1.63 (0.95) −1.56 (0.95) −1.62 (0.97)

ADAS 60 19.40 (7.26) 19.10 (7.41) 18.97 (6.95) 18.48 (6.71) 19.77 (7.91) 19.10 (7.02 18.50 (7.44) 19.02 (7.21)

ADAS-Cog 60 16.77 (6.38) 17.18 (6.97) 16.70 (6.22) 16.25 (6.03) 17.38 (7.15) 16.68 (6.24) 16.37 (6.89) 16.83 (6.63)

CDT 60 4.72 (2.14) 4.63 (2.20) 4.85 (2.17) 4.75 (2.05) 4.83 (1.84) 4.88 (2.18) 4.80 (1.98) 4.78 (2.03)

FAI self 54 2.78 (0.75) 2.67 (0.74) 2.53 (0.79) 2.57 (0.73) 2.60 (0.70) 2.76 (0.75) 2.53 (0.76) 2.59 (0.78)

FAI ext 60 3.12 (0.80) 3.12 (0.86) 3.10 (0.87) 3.23 (0.94) 3.17 (0.84) 3.01 (0.88) 3.10 (0.87) 3.18 (0.94)

BDI-II 58 6.79 (5.25) 6.10 (5.27) 4.72 (4.06) 5.31 (4.96) 6.36 (5.56) 5.60 (5.28) 5.10 (5.26) 5.72 (4.53)

GDS 59 2.19 (1.72) 2.00 (1.91) 1.47 (1.47) 1.78 (2.25) 1.98 (1.95) 1.81 (2.13) 1.76 (1.99) 1.83 (2.17)

IADL self 60 0.91 (0.15) 0.92 (0.13) 0.93 (0.13) 0.89 (0.15) 0.93 (0.12) 0.93 (0.13) 0.92 (0.12) 0.93 (0.10)

IADL ext 60 0.80 (0.20) 0.82 (0.20) 0.81 (0.21) 0.81 (0.21) 0.80 (0.20) 0.81 (0.20) 0.83 (0.17) 0.80 (0.20)

B-ADL self 54 2.43 (1.40) 2.16 (1.21) 2.07 (0.98) 2.22 (1.11) 2.12 (1.02) 2.18 (1.01) 2.01 (0.96) 2.12 (1.18)

B-ADL ext 60 4.00 (1.95) 4.17 (2.08) 4.25 (2.15) 4.46 (2.27) 3.91 (1.89) 4.06 (1.91) 4.06 (1.96) 4.35 (2.17)

LB self 54 1.82 (0.58) 1.78 (0.58) 1.83 (0.58) 1.90 (0.59) 1.89 (0.62) 1.91 (0.60) 1.92 (0.65) 1.82 (0.61)

LB ext 60 1.66 (0.51) 1.62 (0.45) 1.67 (0.56) 1.63 (0.55) 1.65 (0.46) 1.71 (0.51) 1.60 (0.52) 1.60 (0.50)

NPI 60 6.67 (10.86) 7.27 (11.05) 6.42 (8.51) 7.00 (8.60) 5.77 (7.52) 6.93 (8.68) 6.08 (7.27) 6.50 (8.17)

PI 60 2.06 (0.88) 1.99 (0.98) 2.11 (0.88) 2.07 (0.91) 1.89 (0.85) 2.10 (0.93) 1.90 (0.85) 1.93 (0.87)

Abbreviations: ADAS, Alzheimer Disease Assessment Scale; ADAS-Cog, Alzheimer Disease Assessment Scale–Cognitive Scale; B-ADL, Bayer Activities of Daily Living Scale; BDI-II, Beck
Depression Inventory-II; CDT, clock drawing test; CTS, corrected total score; ext, external assessment; FAI, Forgetfulness Assessment Inventory; GDS, Geriatric Depression Scale;
IADL, Instrumental Activities of Daily Living Scale; LB, leisure behavior; NPI, Neuropsychiatric Inventory; NTBV, Neuropsychological Test Battery Vienna; PI, Prosopagnosia Index.
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with better sham-controlled verum response. Yet, several patients older than 70 years benefited
from verum treatment as well (eFigure 4 in Supplement 2).

Score increases were higher in the first cycle (particularly in the verum-sham group) compared
with the second cycle, suggesting the presence of a carryover effect (Figure 2). To address this
potential confounding, a post hoc ANCOVA of the first cycle only was conducted, with the between-
patient factor group (reflecting verum and sham), session as within-patient factor, and age as
covariates. While the analysis over all patients revealed a main effect of session only (P < .001;
ηp2 = 0.14) (eTable 10 and eTable 11 in Supplement 2), a significant interaction between
session × group (P = .03; ηp2 = 0.12) emerged for the younger patients, with significantly higher
score increases in all poststimulation sessions for patients receiving verum compared with sham (ηp2

>0.14 for all post hoc contrasts) (eTable 12 in Supplement 2; Figure 2). For the older patients, only an
effect of session was found (P = .02; ηp2 = 0.10) (eTable 13 in Supplement 2). Results for the PP
sample were similar to the findings for the ITT group (eTables 14-23 in Supplement 2).

fMRI Outcomes
Comparing the conditions with respect to changes in memory-associated brain activation from
baseline (interaction condition × session), significantly higher posttreatment activation was

Figure 2. CERAD Corrected Total Scores (CTS)
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observed in the verum condition in the precuneus, a key area of the memory network,22 visual areas,
and in frontal regions supporting executive functions (superior and inferior frontal gyrus) (Figure 3).
Whole-brain fMRI results are listed in eTable 40 in Supplement 2, with peak T value, cluster size, and
Montreal Neurological Institute coordinates (eFigure 3 and eFigure 5 in Supplement 2). No area
showed higher activation in the sham compared with the verum condition (Figure 3; eFigure 5 in
Supplement 2). A supplementary analysis of memory-related brain activation within a bilateral
parahippocampal region of interest revealed an effect of condition, with higher mean T values
observed in the verum condition (eFigure 6 in Supplement 2). Higher mean T values within this
region of interest were associated with fewer difficulties in activities of daily living (Bayer Activities
of Daily Living external: ρ = −0.16; P = .02) and reduced forgetfulness (Forgetfulness Assessment
Inventory external: ρ = −0.17; P = .01), as reported by the accompanying persons.

Besides main effects of condition in several cognitive networks (eTable 41 and eFigure 7 in
Supplement 2), the GE analysis of resting-state fMRI data revealed a significant condition × session
interaction in the dorsal attention network (P = .03). These effects specifically concerned the left
frontal part of the dorsal attention network (P < .05), with increased GE compared with the
respective baseline (eFigure 8 in Supplement 2). A sham vs verum GE was found in none of the
networks investigated.

Secondary Behavioral Outcomes
Descriptive data for neuropsychological secondary outcomes are provided in the Table and detailed
statistical reports are presented in eTables 24-29 (Supplement 2). For the self-reported leisure
activities and the prosopagnosia index, a significant benefit for the verum condition was found.

Analyses for the PP sample were mostly consistent with ITT results (eTables 30-35 in
Supplement 2), with one major exception. For the BDI-II, significant interactions of condition × session
(P = .04; ηp2 = 0.07) and condition × session × age (P = .008; ηp2 = 0.11) emerged, with significantly
lower BDI-II scores 3 months post stimulation compared with baseline in the verum condition (mean
[SD] verum baseline: 7.27 [5.87]; verum 3 months post stimulation: 5.27 [5.27]; sham baseline: 6.70
[5.65]; sham 3 months post stimulation: 6.22 [4.40]; P = .008; ηp2 = 0. 23). Separate ANOVAs for both
age groups showed a significant interaction condition × session for both groups (younger: P = .04;
ηp2 = 0.19; older: P = .007; ηp2 = 0.17) (eTables 36-38 in Supplement 2) with a nonsignificant
improvement post stimulation in the younger participants and a significant reduction of depressive
symptoms 3 months post stimulation in the older group (P = .02 with correction; ηp2 = 0.28) (Figure 4).
For the other neuropsychological secondary outcomes, no statistical significance was observed for the
interactions of interest (condition × session, condition × session × age).

Figure 3. Functional Magnetic Resonance Imaging Results (fMRI)
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treat sample, P = .001; uncorrected, k = 10).
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Adverse Events
In total, 39 AEs with mild to moderate severity were noted in 24 participants (eTable 42 in
Supplement 2). The most commonly observed symptom was depression, with clinically significant
increases in depression scores (BDI-II) in 7 participants (12%), including 3 patients with a temporal
association between symptom onset and verum TPS. A mild transient ischemic attack occurred in a
participant during the washout period after completing the first cycle with sham applications. Further
reports of AEs comprised headaches (7%); pain in the neck, shoulder, back, or hand (7%); dizziness
(5%); anxiety (2%); sleep disorder (2%); and fatigue (2%), which were potentially related to general
study procedures. No major neuropathologic change was detected in the patients by detailed
neuroradiologic assessments, including the Fazekas score (eTable 43 in Supplement 2).

Subjective evaluations following the TPS interventions revealed low ratings of pain (<1 of 10)
and pressure (<2 of 10). Accuracy for detecting the true condition was by chance, implying that
blinding was successful (eTable 44 in Supplement 2).

Discussion

To our knowledge, this is the first randomized, sham-controlled clinical trial probing the effects of
focused ultrasound neuromodulation in AD. We found increased memory-related brain activation

Figure 4. Beck Depression Inventory (BDI-II) Scores in the Per Protocol Sample
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and functional connectivity compared with sham stimulation that translated to significant cognitive
improvements in the younger subsample.

In more detail, a significant improvement over time was found for the primary outcome CERAD
CTS, with increased scores in all poststimulation sessions compared with the baseline. Yet, a specific
improvement for the verum compared with the sham condition was not significant and was
influenced by the different age structure in the treatment sequence groups. By splitting the sample
into a younger (aged �70 years) and older subsample, a significant benefit of verum TPS on the
CERAD CTS was found for the younger patients.

Improvements in the CERAD CTS were primarily observed during the first cycle, with more-
pronounced increases for verum TPS. The score appeared to plateau during the second cycle in both
conditions, which diluted the overall increase in mean scores. In addition, different effects for verum
and sham in the first cycle led to substantially different baseline levels between groups in the
second cycle.

To address the bias induced by the carryover effect, a post hoc analysis of the first cycle only
was conducted. With this analysis, CERAD CTS values improved by a mean (SD) of verum TPS
(younger: 6.38 [7.51], older: 3.42 [6.91]), showing similar improvements as found in the pilot study.14

Again, cognitive enhancement compared with sham was significant only in the younger subgroup,
with large effects for all post hoc comparisons. Chronological age constitutes only an approximation
for biological or brain age, which can be more informative for estimating treatment responses.23

In accordance with previous studies,14-16,24 behavioral findings were supported by evidence
from fMRI. Compared with sham, patients displayed significantly higher memory-related brain
activation increase after verum stimulation in a key area of the memory network: the precuneus.
Brain areas involved in executive and visual functions, as required in the face-name association task,
also showed a significant verum TPS effect. Functional connectivity analyses revealed a significantly
higher GE increase in the attention network for verum compared with sham, supporting an
improvement of attentional aspects of cognition. In addition, fMRI data showed no area with a
significantly higher memory-related activation or resting state GE in the sham condition, indicating a
specific functional upregulation of cognitive areas and networks due to verum TPS.

Regarding depressive symptoms, a significant reduction in BDI-II scores was found for verum
TPS in the PP sample 3 months following TPS treatment. This first observation of a sham-controlled
antidepressant effect of TPS is in line with previous data in patients with AD14,15,25,26 and in
individuals with major depressive disorder.27

Besides the current investigation, to our knowledge, only 1 sham-controlled study of ultrasound
neuromodulation in AD has been conducted, applying whole-brain stimulation using an unfocused
diffusion type system in 15 patients with AD (10 verum, 5 sham).28 While the verum group remained
cognitively stable for over a year, as measured by the ADAS-cog (Japanese version), patients in the
sham group exhibited cognitive decline. However, the group comparison did not reach statistical
significance, consistent with the nonsignificant results for the ADAS-cog in this study. In other open-
label ultrasound neuromodulation studies in AD, improved cognitive scores (eg, ADAS-cog) were
observed.25,26,29 Yet not all findings reached statistical significance, potentially due to the small
sample size or the limited sensitivity of the cognitive tests used to detect mild deficits.

As the clinical application of ultrasound neuromodulation is still in its early stages,7 the optimal
settings and parameters remain to be established for maximizing efficacy. Based on our data and
given the large interindividual variability, we suggest sample sizes exceeding 100 participants and
longer follow-up periods to optimize future therapeutic research. Future clinical ultrasound
neuromodulation studies should avoid the carryover effect by applying a parallel-group design or
extended crossover intervals in clinically stable conditions. Comprehensive assessments of brain
function, structure, and metabolism, alongside measurements of amyloid β and tau depositions,
could provide deeper insights into the mechanisms of action of ultrasound neuromodulation in
treating AD and other dementias.
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Limitations
This study has limitations. By coincidence, the treatment sequence groups differed considerably
regarding their age, with the group receiving verum TPS first being significantly younger. The
neuropsychological tests were administered 8 times in total, so practice or attrition effects must be
considered. Since learning curves are typically nonlinear and attenuated in older individuals or those
with more impairments,30 the potential bias of age had to be addressed by post hoc analyses. Future
studies should prospectively consider age as factor, optimally combined with measures of biological
and brain age.

Conclusions

In this randomized clinical trial of TPS in patients with AD, a 2-week treatment was well tolerated and
improved cognitive scores (CERAD CTS) in the younger subgroup of patients with AD, ameliorated
depressive symptoms, and induced upregulation of functional brain activation and connectivity.
These findings suggest TPS as a safe and promising add-on therapy for patients with AD receiving
state-of-the-art treatment.
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