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Dear Editor,  

A major methodological progress inherent in ultrasound neuromodulation concerns the 

capability for non-invasive highly focal deep brain stimulation. But – how deep can we 

stimulate?  

The new article by Ham et al. describes enhancement of neuronal target activity with 

ultrasound neuromodulation in a depth of 12 mm from the reflector (maximum pressure) in a 

mouse model [1]. This was achieved with a specifically developed sonication system based on 

the principle of shock wave generation with a dielectric breakdown (DB system). In contrast, 

Ham et al. did not find upregulation of neuronal target activity with a commercial shock wave 

system based on an electromagnetic transducer (EM system). EM reached maximum pressure 

over an extended area in 20-65 mm depth from the reflector. For detailed descriptions of DB 

and EM systems see [1]. However, some issues concerning pressure profiles and deep 

targeting capabilities of already existing EM systems need to be further clarified and this 

information is outlined below. 

Up to now, four major technical implementations have been described which allow non-

invasive deep brain neuromodulation and can be classified as follows: (I) multichannel 

systems focusing >1000 ultrasound generating units integrated in a helmet, (II) oligochannel 

systems focusing <300 units integrated in a larger transducer which can be positioned over 

various brain areas, and (III) single channel systems with the smallest available transducer 

and a focus defined by the reflector characteristics. This classification is based on the number 

of ultrasound channels applied (for technical/physical implementations compare [2]). All 

systems are able to target deep or mid-level brain structures. However, systems (I) and (II) are 

typically limited in their capability to target superficial brain areas which is not the case for 

single channel systems. With single channel systems reflector properties may be constructed 

to target deep or superficial tissue and application of stand offs allows easy change of focal 

stimulation depth. Concerning sonication, two approaches exist: monofrequency sonication 

and multifrequency sonication based on shock wave principles. Compared to monofrequency 

pulses, with pulse repetition frequency typically in the ms range, multifrequency pulses are in 

the µs range and allow much higher peak pressures or peak intensities (compare [3]). 

Multifrequency pulses are currently only implemented in systems based on shock wave 

principles, however, multifrequency stimulation and pulse durations in the µs range could also 

be implemented with other systems. Achievement of high peak pressures is an important issue 

for human applications, since energy absorption in human skull may reach up to 85% peak 

intensity reductions [4]. Ham et al. report peak intensities of 0.1-5.0 W/mm2 with 

monofrequency sonication, but 10 - 127 W/mm2 with multifrequency pulses [1]. Up to now, 

multifrequency sonication is only implemented with single channel systems (implementation 

(IV): single channel – multifrequency).  

Meanwhile, enhancement of neuronal activity at deep human brain targets has been described 

for all four ultrasound neuromodulation techniques. This is true for studies involving healthy 

human participants and clinical trials. Importantly, current evidence shows that ultrasound 

neuromodulation is safe and potential risks are comparable for cortical or deep stimulation 

(for review see [5]). According to current knowledge, effects of all technical ultrasound 

implementations are based on the same mechanisms of action and local stimulation effects 

have been proven using independent methodologies. For human use, concurrent fMRI, arterial 

spin labeling (ASL), or EEG have been investigated to monitor immediate or short term 

effects [6–8]. For assessing long term effects, more sophisticated MRI analyses such as 

functional connectivity analysis, diffusion tensor imaging, and MR spectroscopy [9,10], as 

well as EEG [11] and TMS [12] have been administered. In animal studies, invasive 

electrophysiological recordings [13], as well as optical and optoacoustic monitoring [14] have 
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been used. The following examples illustrate enhancement of neuronal activity in deep human 

brain areas: (I) Successful stimulation of the nucleus accumbens at around 65 mm focal depth 

was described for patients with substance use disorder using multichannel systems [15]. (II) 

With oligochannel systems, dorsal anterior and posterior cingulate cortex stimulations were 

performed at 60-70 mm focal depth in healthy individuals [10]. (III) Thalamus stimulation 

was reported for several single-channel monofrequency systems with a focal depth of 

approximately 55 mm, for example in patients with disorders of consciousness [16]. (IV) For 

single channel – multifrequency systems, enhancement of neuronal activity in the precuneus, 

extending to a depth of 50-60 mm, was described using Transcranial Pulse Stimulation (TPS) 

in patients with Alzheimer’s disease [4]. TPS is the only dedicated neuromodulation system 

with clinical approval for neuromodulation therapy in the European Union and has already 

shown the clinical potential which is expected by Ham et al. from their DB system. It is also 

important to note that the clinical utilization of focused shockwaves (e.g., currently more than 

100.000 TPS patient treatments worldwide) is more prevalent as that of Focused Ultrasound 

(FUS) [17,18]. A major challenge with current ultrasound neuromodulation research is the 

large number of sonication parameters which may be set with various sonication systems and 

the complexity of their interactions. Controlled variation of single key parameters (with all 

others kept stable) is therefore warranted for clinical research. TPS focuses on variation of 

pulse frequency and intensity, with increasing evidence that both are key parameters for dose-

response relationships [19,20]. Importantly, TPS has a pressure profile well suited to target 

deep brain regions, even areas located considerably deeper than the 12 mm focus of the DB 

system used in the mouse model in Ham et al. [1]. Note, that deep brain stimulation in 

humans poses additional challenges since the human brain is larger and the skull attenuation 

is increased. The 50% extension of TPS peak pressure (FEHM, corresponding to FWHM in 

axial direction) reaches from 20 to 80 mm. At 80 mm depth, pressure measured below human 

skull still reaches about 4.5 MPa (Fig. 1a, compare Fig. 1 in Ham et al. [1]). Multiple studies 

have found larger effects when increasing pressure / intensity in vitro [20] or in vivo [21]. 

Therefore, it may be assumed that biological effects may be achievable even in depths > 80 

mm. Due to a transversal FWHM (full width half maximum in transversal direction) of 3-4 

mm and a rapid pressure rise time TPS can precisely focus in a specific deep brain region and 

several TPS investigations have also shown enhancement of neuronal target activity [4,9,22].  

In contrast, Ham et al. did not find enhancement of neuronal activity at deep targets with their 

commercial EM transducer system [1]. A possible reason may be that the TPS pressure profile 

completely differs from the EM pressure profile. Negative pressure peaks with TPS are minor 

(Fig. 1b, compare Fig. 1 in [1]), whereas for EM positive and negative pressure peaks are 

about the same size. On a side note, exact pressure profile measurements for systems like EM 

or DB require a sensor size < 1.0 mm and a flat frequency response (+/-3dB) over the whole 

calibration range of 500kHz to 15 MHz (at least) according to the IEC61846 standard (§6). 

This would be achievable with a dedicated needle hydrophone or an acousto-optic fibre 

hydrophone as common practice in the field, but does not apply for the 113B23, PCB 

(Piezotronic) sensor (resonance of this sensor lies above 500kHz). This situation may impact 

gradients and peak pressure distributions measured (Fig. 1b in [1]) and consequently the 

comparison of DB with EM pressure waveforms. 

Regarding deep brain activation with ultrasound neuromodulation, a further important aspect 

concerns neuronal network connectivity. Direct neuronal stimulation has to be differentiated 

from indirect neuronal stimulation mediated through network effects [5]. In analogy to 

electrophysiological non-invasive brain stimulation techniques like TMS, stimulation of 

superficial cortical areas might not only elicit direct effects on the targeted site, but also in 

anatomically and functionally interconnected regions [23]. Investigations in neuronal cell 

cultures suggest that only 3-5% of a connected network needs to be stimulated to propagate 
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neuronal activation [24]. Indirect effects on deep brain structures were described for TPS in 

Alzheimer’s disease [4]. In this first clinical study with focused navigated ultrasound, no 

direct stimulation of hippocampal and parahippocampal areas was performed, but activation 

upregulation was demonstrated with functional MRI data. Hippocampal and parahippocampal 

activation was a consequence of stimulation of cortical nodes of a network related to memory 

functions. Further, an early study with healthy participants showed indirect thalamus 

activation as measured with functional MRI during V1 stimulation, using two sets of single-

element FUS transducers [25]. A very recent study by Oh et al. demonstrated functional 

connectivity alterations in the anterior cingulate cortex as a consequence of stimulation of the 

left dorsolateral prefrontal cortex in patients with major depressive disorder with a single 

channel FUS system [26]. A detailed overview of clinical applications including deep brain 

stimulation and real-world use cases has recently been published by Matt et al. [17]. 

 

Conclusion 

For all four ultrasound neuromodulation techniques (multichannel, oligochannel, single 

channel – monofrequency, single channel – multifrequency), comprehensive evidence exists 

that focal enhancement of neuronal activity in depths between 50-70 mm is possible. Besides 

this direct deep focal neuromodulation, there is also multiple evidence for indirect activation 

of deep unstimulated neurons via stimulation of connected network nodes. 
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Fig. 1. Pressure Profile of Transcranial Pulse Stimulation (TPS). a) TPS peak pressure 

point lies at a distance of 4.5 cm from the hand piece with the FEHM (Full Extension at Half 

Maximum) ranging from 20 to 80 mm. At 80 mm depth, pressure measured below human 

skull still reaches about 4.5 MPa. b) Pressure signal is attenuated by human skull (yellow and 

red graphs corresponding to measurements below two human skulls). 
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